Downloading the data:

> tmp <- tempfile(fileext = "xlsx")
> download.file("https://www.dropbox.com/s/3uq5zaqt7tdqro8/Census%202015%20village%20dengue%20and%20built%20Up.xlsx?raw=1", tmp)
> data <- readxl::read_excel(tmp)

Renaming the variables (replacing spaces with _)

> names(data) <- gsub(" +", "_", names(data))
> mod1 <- glm(All ~ as.factor(Urban_Type), poisson, data, offset = log(nb_person_2014))
> summary(mod1)

Call:
glm(formula = All ~ as.factor(Urban_Type), family = poisson, 
    data = data, offset = log(nb_person_2014))

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-7.2074  -2.1010  -1.0423   0.6472  12.3554  

Coefficients:
                       Estimate Std. Error  z value Pr(>|z|)    
(Intercept)            -6.00909    0.03398 -176.840  < 2e-16 ***
as.factor(Urban_Type)1  1.06981    0.04596   23.276  < 2e-16 ***
as.factor(Urban_Type)2  1.19734    0.05288   22.641  < 2e-16 ***
as.factor(Urban_Type)3  1.28481    0.04209   30.522  < 2e-16 ***
as.factor(Urban_Type)4  0.48333    0.11822    4.088 4.34e-05 ***
as.factor(Urban_Type)5  0.09049    0.12187    0.742    0.458    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 4406.3  on 466  degrees of freedom
Residual deviance: 3135.2  on 461  degrees of freedom
  (1 observation deleted due to missingness)
AIC: 4404

Number of Fisher Scoring iterations: 5
> anova(mod1, test = "LRT")
Analysis of Deviance Table

Model: poisson, link: log

Response: All

Terms added sequentially (first to last)

                      Df Deviance Resid. Df Resid. Dev  Pr(>Chi)    
NULL                                    466     4406.3              
as.factor(Urban_Type)  5     1271       461     3135.2 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> mod2 <- glm(All ~ ordered(Born_in_this_place_CAT) + as.factor(Urban_Type), poisson, data, offset = log(nb_person_2014))
> summary(mod2)

Call:
glm(formula = All ~ ordered(Born_in_this_place_CAT) + as.factor(Urban_Type), 
    family = poisson, data = data, offset = log(nb_person_2014))

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-7.5544  -1.9716  -0.9430   0.8479  12.0840  

Coefficients:
                                  Estimate Std. Error  z value Pr(>|z|)    
(Intercept)                       -6.01108    0.03419 -175.809  < 2e-16 ***
ordered(Born_in_this_place_CAT).L -0.39102    0.05048   -7.747 9.44e-15 ***
ordered(Born_in_this_place_CAT).Q -0.10949    0.04119   -2.658 0.007855 ** 
ordered(Born_in_this_place_CAT).C -0.24938    0.03420   -7.292 3.05e-13 ***
as.factor(Urban_Type)1             0.95690    0.04927   19.420  < 2e-16 ***
as.factor(Urban_Type)2             1.09156    0.05437   20.075  < 2e-16 ***
as.factor(Urban_Type)3             1.12489    0.04609   24.408  < 2e-16 ***
as.factor(Urban_Type)4             0.39742    0.11891    3.342 0.000831 ***
as.factor(Urban_Type)5             0.15655    0.12240    1.279 0.200893    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 4406.3  on 466  degrees of freedom
Residual deviance: 3012.4  on 458  degrees of freedom
  (1 observation deleted due to missingness)
AIC: 4287.2

Number of Fisher Scoring iterations: 5
> anova(mod2, test = "LRT")
Analysis of Deviance Table

Model: poisson, link: log

Response: All

Terms added sequentially (first to last)

                                Df Deviance Resid. Df Resid. Dev  Pr(>Chi)    
NULL                                              466     4406.3              
ordered(Born_in_this_place_CAT)  3   590.82       463     3815.5 < 2.2e-16 ***
as.factor(Urban_Type)            5   803.03       458     3012.4 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> cbind(exp(coef(mod2)), exp(confint(mod2)))
Waiting for profiling to be done...
                                                   2.5 %      97.5 %
(Intercept)                       0.00245144 0.002290814 0.002619419
ordered(Born_in_this_place_CAT).L 0.67636524 0.611951893 0.745895518
ordered(Born_in_this_place_CAT).Q 0.89629244 0.826259467 0.971088876
ordered(Born_in_this_place_CAT).C 0.77928207 0.728795412 0.833363337
as.factor(Urban_Type)1            2.60360851 2.364356655 2.868206929
as.factor(Urban_Type)2            2.97892165 2.677051802 3.313162509
as.factor(Urban_Type)3            3.07989064 2.814920658 3.372375475
as.factor(Urban_Type)4            1.48798377 1.169570818 1.865281323
as.factor(Urban_Type)5            1.16947253 0.912396957 1.475252702
> mod3 <- glm(All ~ Moved_since_2005 + as.factor(Urban_Type), poisson, data, offset = log(nb_person_2014))
> summary(mod3)

Call:
glm(formula = All ~ Moved_since_2005 + as.factor(Urban_Type), 
    family = poisson, data = data, offset = log(nb_person_2014))

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-6.9869  -2.0860  -1.0100   0.6855  13.2081  

Coefficients:
                        Estimate Std. Error  z value Pr(>|z|)    
(Intercept)            -6.217870   0.054921 -113.216  < 2e-16 ***
Moved_since_2005        0.007195   0.001473    4.886 1.03e-06 ***
as.factor(Urban_Type)1  1.059865   0.046013   23.034  < 2e-16 ***
as.factor(Urban_Type)2  1.210107   0.052948   22.854  < 2e-16 ***
as.factor(Urban_Type)3  1.230262   0.043613   28.209  < 2e-16 ***
as.factor(Urban_Type)4  0.460222   0.118308    3.890   0.0001 ***
as.factor(Urban_Type)5  0.101038   0.121884    0.829   0.4071    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 4406.3  on 466  degrees of freedom
Residual deviance: 3112.4  on 460  degrees of freedom
  (1 observation deleted due to missingness)
AIC: 4383.2

Number of Fisher Scoring iterations: 5
> anova(mod3, test = "LRT")
Analysis of Deviance Table

Model: poisson, link: log

Response: All

Terms added sequentially (first to last)

                      Df Deviance Resid. Df Resid. Dev  Pr(>Chi)    
NULL                                    466     4406.3              
Moved_since_2005       1   133.98       465     4272.3 < 2.2e-16 ***
as.factor(Urban_Type)  5  1159.94       460     3112.4 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> cbind(exp(coef(mod3)), exp(confint(mod3)))
Waiting for profiling to be done...
                                         2.5 %      97.5 %
(Intercept)            0.001993486 0.001789998 0.002220011
Moved_since_2005       1.007221202 1.004292270 1.010106319
as.factor(Urban_Type)1 2.885981086 2.637389267 3.158798935
as.factor(Urban_Type)2 3.353843973 3.022224590 3.719530064
as.factor(Urban_Type)3 3.422125225 3.142727522 3.728755754
as.factor(Urban_Type)4 1.584425015 1.246759589 1.983668507
as.factor(Urban_Type)5 1.106318731 0.863941169 1.394075325
> with(data, plot(Moved_since_2005, log(All)))

> with(data, plot(Moved_since_2005, log(All / nb_person_2014)))

> with(data, plot(log(Moved_since_2005), log(All / nb_person_2014)))

> mod5 <- glm(All ~ Water_In_House + Moved_since_2005 + as.factor(Urban_Type), poisson, data, offset = log(nb_person_2014))
> summary(mod5)

Call:
glm(formula = All ~ Water_In_House + Moved_since_2005 + as.factor(Urban_Type), 
    family = poisson, data = data, offset = log(nb_person_2014))

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-6.9514  -2.0786  -1.0327   0.6984  13.1186  

Coefficients:
                        Estimate Std. Error z value Pr(>|z|)    
(Intercept)            -6.084182   0.096056 -63.340  < 2e-16 ***
Water_In_House         -0.007315   0.004328  -1.690    0.091 .  
Moved_since_2005        0.007155   0.001473   4.859 1.18e-06 ***
as.factor(Urban_Type)1  1.064819   0.046106  23.095  < 2e-16 ***
as.factor(Urban_Type)2  1.222544   0.053495  22.853  < 2e-16 ***
as.factor(Urban_Type)3  1.240109   0.044001  28.184  < 2e-16 ***
as.factor(Urban_Type)4  0.467335   0.118393   3.947 7.90e-05 ***
as.factor(Urban_Type)5  0.117710   0.122302   0.962    0.336    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 4406.3  on 466  degrees of freedom
Residual deviance: 3109.5  on 459  degrees of freedom
  (1 observation deleted due to missingness)
AIC: 4382.3

Number of Fisher Scoring iterations: 5
> anova(mod5, test = "LRT")
Analysis of Deviance Table

Model: poisson, link: log

Response: All

Terms added sequentially (first to last)

                      Df Deviance Resid. Df Resid. Dev  Pr(>Chi)    
NULL                                    466     4406.3              
Water_In_House         1     8.89       465     4397.4  0.002865 ** 
Moved_since_2005       1   135.74       464     4261.7 < 2.2e-16 ***
as.factor(Urban_Type)  5  1152.11       459     3109.5 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> cbind(exp(coef(mod5)), exp(confint(mod5)))
Waiting for profiling to be done...
                                         2.5 %      97.5 %
(Intercept)            0.002278628 0.001885543 0.002747694
Water_In_House         0.992711517 0.984377577 1.001219601
Moved_since_2005       1.007180748 1.004252018 1.010065812
as.factor(Urban_Type)1 2.900312841 2.650005643 3.175056921
as.factor(Urban_Type)2 3.395814509 3.056823118 3.770175891
as.factor(Urban_Type)3 3.455990255 3.171391962 3.768498597
as.factor(Urban_Type)4 1.595735458 1.255465657 1.998183228
as.factor(Urban_Type)5 1.124917557 0.877796947 1.418753844
> mod6 <- glm(All ~ Water_In_House + as.factor(Urban_Type) + Moved_since_2005, poisson, data, offset = log(nb_person_2014))
> summary(mod6)

Call:
glm(formula = All ~ Water_In_House + as.factor(Urban_Type) + 
    Moved_since_2005, family = poisson, data = data, offset = log(nb_person_2014))

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-6.9514  -2.0786  -1.0327   0.6984  13.1186  

Coefficients:
                        Estimate Std. Error z value Pr(>|z|)    
(Intercept)            -6.084182   0.096056 -63.340  < 2e-16 ***
Water_In_House         -0.007315   0.004328  -1.690    0.091 .  
as.factor(Urban_Type)1  1.064819   0.046106  23.095  < 2e-16 ***
as.factor(Urban_Type)2  1.222544   0.053495  22.853  < 2e-16 ***
as.factor(Urban_Type)3  1.240109   0.044001  28.184  < 2e-16 ***
as.factor(Urban_Type)4  0.467335   0.118393   3.947 7.90e-05 ***
as.factor(Urban_Type)5  0.117710   0.122302   0.962    0.336    
Moved_since_2005        0.007155   0.001473   4.859 1.18e-06 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 4406.3  on 466  degrees of freedom
Residual deviance: 3109.5  on 459  degrees of freedom
  (1 observation deleted due to missingness)
AIC: 4382.3

Number of Fisher Scoring iterations: 5
> anova(mod6, test = "LRT")
Analysis of Deviance Table

Model: poisson, link: log

Response: All

Terms added sequentially (first to last)

                      Df Deviance Resid. Df Resid. Dev  Pr(>Chi)    
NULL                                    466     4406.3              
Water_In_House         1     8.89       465     4397.4  0.002865 ** 
as.factor(Urban_Type)  5  1265.23       460     3132.2 < 2.2e-16 ***
Moved_since_2005       1    22.63       459     3109.5 1.969e-06 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> cbind(exp(coef(mod6)), exp(confint(mod6)))
Waiting for profiling to be done...
                                         2.5 %      97.5 %
(Intercept)            0.002278628 0.001885543 0.002747694
Water_In_House         0.992711517 0.984377577 1.001219601
as.factor(Urban_Type)1 2.900312841 2.650005643 3.175056921
as.factor(Urban_Type)2 3.395814509 3.056823118 3.770175891
as.factor(Urban_Type)3 3.455990255 3.171391962 3.768498597
as.factor(Urban_Type)4 1.595735458 1.255465657 1.998183228
as.factor(Urban_Type)5 1.124917557 0.877796947 1.418753844
Moved_since_2005       1.007180748 1.004252018 1.010065812
> mod7 <- glm(All ~ as.factor(Urban_Type) + Work_Mig, poisson, data, offset = log(nb_person_2014))
> summary(mod7)

Call:
glm(formula = All ~ as.factor(Urban_Type) + Work_Mig, family = poisson, 
    data = data, offset = log(nb_person_2014))

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-7.2149  -2.0960  -1.0391   0.6351  12.3324  

Coefficients:
                        Estimate Std. Error  z value Pr(>|z|)    
(Intercept)            -6.005180   0.034365 -174.749  < 2e-16 ***
as.factor(Urban_Type)1  1.077406   0.047042   22.903  < 2e-16 ***
as.factor(Urban_Type)2  1.201096   0.053119   22.611  < 2e-16 ***
as.factor(Urban_Type)3  1.291388   0.042976   30.049  < 2e-16 ***
as.factor(Urban_Type)4  0.485409   0.118250    4.105 4.04e-05 ***
as.factor(Urban_Type)5  0.087292   0.121946    0.716    0.474    
Work_Mig               -0.003513   0.004660   -0.754    0.451    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 4406.3  on 466  degrees of freedom
Residual deviance: 3134.7  on 460  degrees of freedom
  (1 observation deleted due to missingness)
AIC: 4405.5

Number of Fisher Scoring iterations: 5
> anova(mod7, test = "LRT")
Analysis of Deviance Table

Model: poisson, link: log

Response: All

Terms added sequentially (first to last)

                      Df Deviance Resid. Df Resid. Dev Pr(>Chi)    
NULL                                    466     4406.3             
as.factor(Urban_Type)  5  1271.04       461     3135.2   <2e-16 ***
Work_Mig               1     0.57       460     3134.7   0.4484    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> cbind(exp(coef(mod7)), exp(confint(mod7)))
Waiting for profiling to be done...
                                         2.5 %      97.5 %
(Intercept)            0.002465945 0.002303626 0.002635865
as.factor(Urban_Type)1 2.937050482 2.678644509 3.221170238
as.factor(Urban_Type)2 3.323757964 2.994123580 3.687412169
as.factor(Urban_Type)3 3.637833298 3.345013989 3.958874289
as.factor(Urban_Type)4 1.624840217 1.278699319 2.034018048
as.factor(Urban_Type)5 1.091214833 0.852050648 1.375220178
Work_Mig               0.996492929 0.987301831 1.005506780
> mod7 <- glm(All ~ Work_Mig + as.factor(Urban_Type), poisson, data, offset = log(nb_person_2014))
> summary(mod7)

Call:
glm(formula = All ~ Work_Mig + as.factor(Urban_Type), family = poisson, 
    data = data, offset = log(nb_person_2014))

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-7.2149  -2.0960  -1.0391   0.6351  12.3324  

Coefficients:
                        Estimate Std. Error  z value Pr(>|z|)    
(Intercept)            -6.005180   0.034365 -174.749  < 2e-16 ***
Work_Mig               -0.003513   0.004660   -0.754    0.451    
as.factor(Urban_Type)1  1.077406   0.047042   22.903  < 2e-16 ***
as.factor(Urban_Type)2  1.201096   0.053119   22.611  < 2e-16 ***
as.factor(Urban_Type)3  1.291388   0.042976   30.049  < 2e-16 ***
as.factor(Urban_Type)4  0.485409   0.118250    4.105 4.04e-05 ***
as.factor(Urban_Type)5  0.087292   0.121946    0.716    0.474    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 4406.3  on 466  degrees of freedom
Residual deviance: 3134.7  on 460  degrees of freedom
  (1 observation deleted due to missingness)
AIC: 4405.5

Number of Fisher Scoring iterations: 5
> anova(mod7, test = "LRT")
Analysis of Deviance Table

Model: poisson, link: log

Response: All

Terms added sequentially (first to last)

                      Df Deviance Resid. Df Resid. Dev  Pr(>Chi)    
NULL                                    466     4406.3              
Work_Mig               1     70.3       465     4336.0 < 2.2e-16 ***
as.factor(Urban_Type)  5   1201.3       460     3134.7 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> cbind(exp(coef(mod7)), exp(confint(mod7)))
Waiting for profiling to be done...
                                         2.5 %      97.5 %
(Intercept)            0.002465945 0.002303626 0.002635865
Work_Mig               0.996492929 0.987301831 1.005506780
as.factor(Urban_Type)1 2.937050482 2.678644509 3.221170238
as.factor(Urban_Type)2 3.323757964 2.994123580 3.687412169
as.factor(Urban_Type)3 3.637833298 3.345013989 3.958874289
as.factor(Urban_Type)4 1.624840217 1.278699319 2.034018048
as.factor(Urban_Type)5 1.091214833 0.852050648 1.375220178

Final model, writing the residuals into a CSV file:

> mod7 <- glm(All ~ as.factor(Urban_Type) + Moved_since_2005, poisson, data, offset = log(nb_person_2014), na.action = na.exclude)
> summary(mod7)

Call:
glm(formula = All ~ as.factor(Urban_Type) + Moved_since_2005, 
    family = poisson, data = data, na.action = na.exclude, offset = log(nb_person_2014))

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-6.9869  -2.0860  -1.0100   0.6855  13.2081  

Coefficients:
                        Estimate Std. Error  z value Pr(>|z|)    
(Intercept)            -6.217870   0.054921 -113.216  < 2e-16 ***
as.factor(Urban_Type)1  1.059865   0.046013   23.034  < 2e-16 ***
as.factor(Urban_Type)2  1.210107   0.052948   22.854  < 2e-16 ***
as.factor(Urban_Type)3  1.230262   0.043613   28.209  < 2e-16 ***
as.factor(Urban_Type)4  0.460222   0.118308    3.890   0.0001 ***
as.factor(Urban_Type)5  0.101038   0.121884    0.829   0.4071    
Moved_since_2005        0.007195   0.001473    4.886 1.03e-06 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 4406.3  on 466  degrees of freedom
Residual deviance: 3112.4  on 460  degrees of freedom
  (1 observation deleted due to missingness)
AIC: 4383.2

Number of Fisher Scoring iterations: 5
> anova(mod7, test = "LRT")
Analysis of Deviance Table

Model: poisson, link: log

Response: All

Terms added sequentially (first to last)

                      Df Deviance Resid. Df Resid. Dev  Pr(>Chi)    
NULL                                    466     4406.3              
as.factor(Urban_Type)  5  1271.04       461     3135.2 < 2.2e-16 ***
Moved_since_2005       1    22.87       460     3112.4 1.732e-06 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> cbind(exp(coef(mod7)), exp(confint(mod7)))
Waiting for profiling to be done...
                                         2.5 %      97.5 %
(Intercept)            0.001993486 0.001789998 0.002220011
as.factor(Urban_Type)1 2.885981086 2.637389267 3.158798935
as.factor(Urban_Type)2 3.353843973 3.022224590 3.719530064
as.factor(Urban_Type)3 3.422125225 3.142727522 3.728755754
as.factor(Urban_Type)4 1.584425015 1.246759589 1.983668507
as.factor(Urban_Type)5 1.106318731 0.863941169 1.394075325
Moved_since_2005       1.007221202 1.004292270 1.010106319
> write.csv(data.frame(code_sig = data$code_sig, residuals = resid(mod7)), "residuals.csv", quote = FALSE, row.names = FALSE)